Page 11 - Feasibility study of microwave electron heating on the C-2 field-reversed configuration device
P. 11

012509-11 Fulton et al.
6L. C. Steinhauer, “Review of field-reversed configurations,” Phys. Plasmas
18(7), 070501 (2011).
7N. Rostoker, F. Wessel, H. Rahman, B. C. Maglich, B. Spivey, and A.
Fisher, “Magnetic fusion with high energy self-colliding ion beams,”
Phys. Rev. Lett. 70, 1818–1821 (1993).
8M. W. Binderbauer and N. Rostoker, “Turbulent transport in magnetic
confinement: How to avoid it,” J. Plasma Phys. 56, 451–465 (1996).
9D. C. Barnes, J. L. Schwarzmeier, H. R. Lewis, and C. E. Seyler, “Kinetic tilting stability of field-reversed configurations,” Phys. Fluids 29(8),
2616–2629 (1986).
10H. Naitou, T. Kamimura, and J. M. Dawson, “Kinetic effects on the con-
vective plasma diffusion and the heat transport,” J. Phys. Soc. Jpn. 46(1),
258–265 (1979).
11R. Horiuchi and T. Sato, “Full magnetohydrodynamic simulation of the
tilting instability in a field-reversed configuration,” Phys. Fluids B 1(3),
581–590 (1989).
12W. W. Heidbrink and G. J. Sadler, “The behaviour of fast ions in tokamak
experiments,” Nucl. Fusion 34(4), 535 (1994).
13M. W. Binderbauer, H. Y. Guo, M. Tuszewski, S. Putvinski, L. Sevier, D.
Barnes, N. Rostoker, M. G. Anderson, R. Andow, L. Bonelli, F. Brandi, R. Brown, D. Q. Bui, V. Bystritskii, F. Ceccherini, R. Clary, A. H. Cheung, K. D. Conroy, B. H. Deng, S. A. Dettrick, J. D. Douglass, P. Feng, L. Galeotti, E. Garate, F. Giammanco, F. J. Glass, O. Gornostaeva, H. Gota, D. Gupta, S. Gupta, J. S. Kinley, K. Knapp, S. Korepanov, M. Hollins, I. Isakov, V. A. Jose, X. L. Li, Y. Luo, P. Marsili, R. Mendoza, M. Meekins, Y. Mok, A. Necas, E. Paganini, F. Pegoraro, R. Pousa-Hijos, S. Primavera, E. Ruskov, A. Qerushi, L. Schmitz, J. H. Schroeder, A. Sibley, A. Smirnov, Y. Song, X. Sun, M. C. Thompson, A. D. Van Drie, J. K. Walters, and M. D. Wyman, “Dynamic formation of a hot field reversed configuration with improved confinement by supersonic merging of two colliding high-b compact toroids,” Phys. Rev. Lett. 105, 045003 (2010).
14M. Tuszewski, A. Smirnov, M. C. Thompson, T. Akhmetov, A. Ivanov, R. Voskoboynikov, D. C. Barnes, M. W. Binderbauer, R. Brown, D. Q. Bui et al., “A new high performance field reversed configuration operating re- gime in the C-2 device,” Phys. Plasmas 19(5), 056108 (2012).
15H. Y. Guo, M. W. Binderbauer, T. Tajima, R. D. Milroy, L. C. Steinhauer, X. Yang, E. G. Garate, H. Gota, S. Korepanov, A. Necas, T. Roche, A. Smirnov, and E. Trask, “Achieving a long-lived high-beta plasma state by energetic beam injection,” Nat. Commun. 6, 6897 (2015).
16M. W. Binderbauer, T. Tajima, L. C. Steinhauer, E. Garate, M. Tuszewski, L. Schmitz, H. Y. Guo, A. Smirnov, H. Gota, D. Barnes, B. H. Deng, M. C. Thompson, E. Trask, X. Yang, S. Putvinski, N. Rostoker, R. Andow, S. Aefsky, N. Bolte, D. Q. Bui, F. Ceccherini, R. Clary, A. H. Cheung, K. D. Conroy, S. A. Dettrick, J. D. Douglass, P. Feng, L. Galeotti, F. Giammanco, E. Granstedt, D. Gupta, S. Gupta, A. A. Ivanov, J. S. Kinley, K. Knapp, S. Korepanov, M. Hollins, R. Magee, R. Mendoza, Y. Mok, A. Necas, S. Primavera, M. Onofri, D. Osin, N. Rath, T. Roche, J. Romero, J. H. Schroeder, L. Sevier, A. Sibley, Y. Song, A. D. Van Drie, J. K. Walters, W. Waggoner, P. Yushmanov, K. Zhai, and TAE Team, “A high performance field-reversed configuration,” Phys. Plasmas 22(5), 056110 (2015).
17S. Hamasaki and D. L. Book, “Numerical simulation of the anomalous transport process in radially compressed reversed-field configurations,” Nucl. Fusion 20(3), 289 (1980).
18M. Tuszewski and R. K. Linford, “Particle transport in field-reversed con- figurations,” Phys. Fluids 25(5), 765–774 (1982).
19A. L. Hoffman, R. D. Milroy, and L. C. Steinhauer, “Poloidal flux loss in a field-reversed theta pinch,” Appl. Phys. Lett. 41, 31–33 (1982).
20A. W. Carlson, “A search for lower-hybrid-drift fluctuations in a field- reversed configuration using CO2 heterodyne scattering,” Phys. Fluids 30(5), 1497–1509 (1987).
21D. Winske and P. C. Liewer, “Particle simulation studies of the lower hybrid drift instability,” Phys. Fluids 21(6), 1017–1025 (1978).
22J. U. Brackbill, D. W. Forslund, K. B. Quest, and D. Winske, “Nonlinear evolution of the lower-hybrid drift instability,” Phys. Fluids 27(11), 2682–2693 (1984).
23N. T. Gladd, A. G. Sgro, and D. W. Hewett, “Microstability properties of the sheath region of a field-reversed configuration,” Phys. Fluids 28(7), 2222–2234 (1985).
24N. T. Gladd, J. F. Drake, C. L. Chang, and C. S. Liu, “Electron temperature gradient driven microtearing mode,” Phys. Fluids 23(6), 1182–1192 (1980). 25R. Farengo, P. N. Guzdar, and Y. C. Lee, “Collisionless electron tempera-
ture gradient driven instability in field reversed configurations,” Phys. Fluids B 1(11), 2181–2185 (1989).
Phys. Plasmas 23, 012509 (2016)
26N. A. Krall, “Low-frequency stability for field reversed configuration parameters,” Phys. Fluids 30(3), 878–883 (1987).
27D. E. Hastings and J. E. McCune, “The high universal drift mode,” Phys. Fluids 25(3), 509–517 (1982).
28R. K. Linford, in Unconventional Approaches to Fusion, edited by B. Brunelli and G. G. Leotta (Plenum Press, New York and London, 1982), Vol. 13, p. 463.
29A. L. Hoffman and R. D. Milroy, “Particle lifetime scaling in field- reversed configurations based on lower-hybrid-drift resistivity,” Phys. Fluids 26(11), 3170–3172 (1983).
30S. P. Auerbach and W. C. Condit, “Classical diffusion in a field-reversed mirror,” Nucl. Fusion 21(8), 927 (1981).
31K. Nguyen and T. Kammash, “Classical transport coefficients in a field- reversed configuration,” Plasma Phys. 24(2), 177 (1982).
32R. A. Clemente and C. E. Grillo, “Internal tilting and classical transport for field-reversed configurations based on the Maschke-Hernegger sol- ution,” Phys. Fluids 27(3), 658–660 (1984).
33R. A. Clemente and E. M. Freire, “Classical particle-diffusion time for an- alytical compact tori equilibria,” Plasma Phys. Controlled Fusion 28(7), 951 (1986).
34Y. Aso, S. Himeno, and K. Hirano, “Experimental studies on energy trans- port in a reversed-field theta pinch,” Nucl. Fusion 23(6), 751 (1983).
35D. J. Rej and M. Tuszewski, “A zero-dimensional transport model for field-reversed configurations,” Phys. Fluids 27(6), 1514–1520 (1984).
36S. Hamada, “A model of equilibrium transport and evolution of field reversed configurations,” Nucl. Fusion 26(6), 729 (1986).
37D. C. Quimby, A. L. Hoffman, and G. C. Vlases, “Linus cycle calculations including plasma transport and resistive flux loss,” Nucl. Fusion 21(5), 553 (1981).
38E. J. Caramana, “The long-time evolution approximation for a quasi-one-
39
dimensional plasma system,” Phys. Fluids 28(12), 3557–3566 (1985).
K. A. Werley, “One-and-a-quarter-dimensional transport modeling of the field-reversed configuration,” Phys. Fluids 30(7), 2129–2138 (1987).
40D. E. Shumaker, “Transport simulation of a field-reversed configuration plasma,” Fusion Science and Technology 13(4), 555–576 (1988).
41I. Holod, W. L. Zhang, Y. Xiao, and Z. Lin, “Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry,” Phys. Plasmas 16(12), 122307 (2009).
42Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, “Turbulent transport reduction by zonal flows: Massively parallel simulations,” Science 281, 1835 (1998).
43Y. Xiao and Z. Lin, “Turbulent transport of trapped-electron modes in col- lisionless plasmas,” Phys. Rev. Lett. 103(8), 085004 (2009).
44W. Zhang, Z. Lin, and L. Chen, “Transport of energetic particles by micro- turbulence in magnetized plasmas,” Phys. Rev. Lett. 101(9), 095001 (2008).
45H. S. Zhang, Z. Lin, and I. Holod, “Nonlinear frequency oscillation of Alfv en eigenmodes in fusion plasmas,” Phys. Rev. Lett. 109(2), 025001 (2012).
46Z. Wang, Z. Lin, I. Holod, W. W. Heidbrink, B. Tobias, M. Van Zeeland, and M. E. Austin, “Radial localization of toroidicity-induced Alfv en eigenmodes,” Phys. Rev. Lett. 111(14), 145003 (2013).
47J. McClenaghan, Z. Lin, I. Holod, W. Deng, and Z. Wang, “Verification of gyrokinetic particle simulation of current-driven instability in fusion plas- mas. I. Internal kink mode,” Phys. Plasmas 21(12), 122519 (2014).
48D. Liu, W. Zhang, J. McClenaghan, J. Wang, and Z. Lin, “Verification of gyrokinetic particle simulation of current-driven insta- bility in fusion plasmas. II. Resistive tearing mode,” Phys. Plasmas 21(12), 122520 (2014).
49R. B. White, The Theory of Toroidally Confined Plasmas, 3rd ed. (Imperial College Press, London, 2014).
50W. D. D’haeseleer, W. N. G. Hitchon, J. L. Shohet, J. D. Callen, and D. W. Kerst, Flux Coordinates and Magnetic Field Structure. A Guide to a Fundamental Tool of Plasma Theory (Springer-Verlag, Berlin Heidelberg, 1991).
51A. Yu. Chirkov and V. I. Khvesyuk, “Electromagnetic drift instabilities in high-plasma under conditions of a field reversed configuration,” Phys. Plasmas 17(1), 012105 (2010).
52I. Holod and Z. Lin, “Verification of electromagnetic fluid-kinetic hybrid electron model in global gyrokinetic particle simulation,” Phys. Plasmas 20(3), 032309 (2013).
53I. Holod, D. P. Fulton, and Z. Lin, “Microturbulence in DIII-D tokamak pedestal. II. Electromagnetic instabilities,” Nucl. Fusion 55(9), 093020 (2015).




































   8   9   10   11   12