Page 6 - Gyrokinetic simulation of driftwave instability in field-reversed configuration
P. 6

056111-6 Fulton et al.
Phys. Plasmas 23, 056111 (2016)
produce magnetic equilibria in GTC are read directly into ANC. The cylindrical coordinate grid sacrifices some effi- ciency, but spans the critical separatrix region.
Other mandatory physics features (see Section II) include electromagnetic turbulence and fully kinetic ions. These simulation capabilities already exist in GTC using the magnetic coordinate grid. Development efforts will focus on porting GTC’s proven physics algorithms into ANC. Simultaneously, physics analysis can move forward using existing GTC features but restricted to simulation domains that do not cross the separatrix.
Beyond inclusion of fully kinetic ions, a cross-separatrix simulation domain, and electromagnetic perturbations, long term development goals include realistic end boundary con- ditions on open field lines, and the use of more general FRC equilibria which allow finite toroidal magnetic field. Code features from the new code, ANC, are also intended to be integrated into the GTC suite to produce a more robust, inte- grated physics code.
As mentioned in Section V, fully nonlinear simulations are required to quantitatively predict transport as well as to make direct comparison between simulation and experiment. The physics model used in both GTC and the newly devel- oped ANC is fundamentally nonlinear. Nonlinear physics will be investigated after the spectrum of linear modes is more thoroughly understood.
ACKNOWLEDGMENTS
This work was carried out as part of the author’s thesis work at University of California, Irvine, and continued at Tri Alpha Energy, Inc. Work at University of California was performed with the support of the Norman Rostoker Fellowship (Grant No. TAE-200441) and by the DOE SciDAC GSEP center. GTC simulations used resources on the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory (DOE Contract No. DE-AC05-00OR22725), and the National Energy Research Scientific Computing Center (DOE Contract No. DE-AC02-05CH11231).
1A. C. Kolb, C. B. Dobbie, and H. R. Griem, “Field mixing and associated neutron production in a plasma,” Phys. Rev. Lett. 3, 5–7 (1959).
2T. S. Green, “Evidence for the containment of a hot, dense plasma in a theta pinch,” Phys. Rev. Lett. 5, 297–300 (1960).
3M. Tuszewski, “Field reversed configurations,” Nucl. Fusion 28(11), 2033 (1988).
4L. C. Steinhauer, “Review of field-reversed configurations,” Phys. Plasmas 18(7), 070501 (2011).
5N. Rostoker, F. Wessel, H. Rahman, B. C. Maglich, B. Spivey, and A. Fisher, “Magnetic fusion with high energy self-colliding ion beams,” Phys. Rev. Lett. 70, 1818–1821 (1993).
6M. W. Binderbauer and N. Rostoker, “Turbulent transport in magnetic confinement: How to avoid it,” J. Plasma Phys. 56, 451–465 (1996).
7W. W. Heidbrink and G. J. Sadler, “The behaviour of fast ions in tokamak experiments,” Nucl. Fusion 34(4), 535 (1994).
8M. W. Binderbauer, H. Y. Guo, M. Tuszewski, S. Putvinski, L. Sevier, D. Barnes, N. Rostoker, M. G. Anderson, R. Andow, L. Bonelli, F. Brandi, R. Brown, D. Q. Bui, V. Bystritskii, F. Ceccherini, R. Clary, A. H. Cheung, K. D. Conroy, B. H. Deng, S. A. Dettrick, J. D. Douglass, P. Feng, L. Galeotti, E. Garate, F. Giammanco, F. J. Glass, O. Gornostaeva, H. Gota, D. Gupta, S. Gupta, J. S. Kinley, K. Knapp, S. Korepanov, M. Hollins, I. Isakov, V. A. Jose, X. L. Li, Y. Luo, P. Marsili, R. Mendoza, M. Meekins, Y. Mok, A. Necas, E. Paganini, F. Pegoraro, R. Pousa-Hijos, S. Primavera, E. Ruskov, A. Qerushi, L. Schmitz, J. H. Schroeder, A. Sibley, A.
Smirnov, Y. Song, X. Sun, M. C. Thompson, A. D. Van Drie, J. K. Walters, and M. D. Wyman, “Dynamic formation of a hot field reversed configuration with improved confinement by supersonic merging of two colliding high-b compact toroids,” Phys. Rev. Lett. 105, 045003 (2010).
9M. Tuszewski, A. Smirnov, M. C. Thompson, T. Akhmetov, A. Ivanov, R. Voskoboynikov, D. C. Barnes, M. W. Binderbauer, R. Brown, D. Q. Bui et al., “A new high performance field reversed configuration operating re- gime in the C-2 device,” Phys. Plasmas 19(5), 056108 (2012).
10H. Y. Guo, M. W. Binderbauer, T. Tajima, R. D. Milroy, L. C. Steinhauer, X. Yang, E. G. Garate, H. Gota, S. Korepanov, A. Necas, T. Roche, A. Smirnov, and E. Trask, “Achieving a long-lived high-beta plasma state by energetic beam injection,” Nat. Commun. 6, 6897 (2015).
11M. W. Binderbauer, T. Tajima, L. C. Steinhauer, E. Garate, M. Tuszewski, L. Schmitz, H. Y. Guo, A. Smirnov, H. Gota, D. Barnes, B. H. Deng, M. C. Thompson, E. Trask, X. Yang, S. Putvinski, N. Rostoker, R. Andow, S. Aefsky, N. Bolte, D. Q. Bui, F. Ceccherini, R. Clary, A. H. Cheung, K. D. Conroy, S. A. Dettrick, J. D. Douglass, P. Feng, L. Galeotti, F. Giammanco, E. Granstedt, D. Gupta, S. Gupta, A. A. Ivanov, J. S. Kinley, K. Knapp, S. Korepanov, M. Hollins, R. Magee, R. Mendoza, Y. Mok, A. Necas, S. Primavera, M. Onofri, D. Osin, N. Rath, T. Roche, J. Romero, J. H. Schroeder, L. Sevier, A. Sibley, Y. Song, A. D. Van Drie, J. K. Walters, W. Waggoner, P. Yushmanov, K. Zhai, and TAE Team, “A high performance field-reversed configuration,” Phys. Plasmas 22(5), 056110 (2015).
12M. W. Binderbauer, T. Tajima, M. Tuszewski, L. Schmitz, A. Smirnov, E. Gota, H. Garate, D. Barnes, B. H. Deng, E. Trask, X. Yang, S. Putvinski, R. Andow, N. Bolte, D. Q. Bui, F. Ceccherini, R. Clary, A. H. Cheung, K. D. Conroy, S. A. Dettrick, J. D. Douglass, P. Feng, L. Galeotti, F. Giammanco, E. Granstedt, D. Gupta, S. Gupta, A. A. Ivanov, J. S. Kinley, K. Knapp, S. Korepanov, M. Hollins, R. Magee, R. Mendoza, Y. Mok, A. Necas, S. Primavera, M. Onofri, D. Osin, N. Rath, T. Roche, J. Romero, J. H. Schroeder, L. Sevier, A. Sibley, Y. Song, L. C. Steinhauer, M. C. Thompson, A. D. Van Drie, J. K. Walters, W. Waggoner, P. Yushmanov, K. Zhai, and TAE Team, “Recent breakthroughs on C-2U: Norman’s legacy,” in Physics of Plasma-Driven Accelerators and Accelerator- Driven Fusion, edited by T. Tajima and M. Binderbauer (American Institute of Physics, 2016).
13L. Schmitz, D. Fulton, E. Ruskov, C. Lau, B. H. Deng, T. Tajima, M. W. Binderbauer, I. Holod, Z. Lin, H. Gota, M. Tuszewski, S. A. Dettrick, L. C. Steinhauer, D. Gupta, W. A. Peebles, T. Akhmetov, J. Douglass, E. Garate, A. Ivanov, S. Korepanov, A. Smirnov, M. C. Thompson, E. Trask, and TAE Team, “First evidence of suppressed ion-scale turbulence in a hot high-b plasma,” Nat. Commun. (to be published).
14L. C. Steinhauer, “Electron thermal confinement in the edge plasma of a field-reversed configuration,” Phys. Fluids B 4, 4012 (1992).
15D. Winske and P. C. Liewer, “Particle simulation studies of the lower hybrid drift instability,” Phys. Fluids 21(6), 1017–1025 (1978).
16J. U. Brackbill, D. W. Forslund, K. B. Quest, and D. Winske, “Nonlinear evolution of the lower-hybrid drift instability,” Phys. Fluids 27(11), 2682–2693 (1984).
17N. T. Gladd, A. G. Sgro, and D. W. Hewett, “Microstability properties of the sheath region of a field-reversed configuration,” Phys. Fluids 28(7), 2222–2234 (1985).
18L. C. Steinhauer, “Formalism for multi-fluid equilibria with flow,” Phys. Plasmas 6, 2734 (1999).
19Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, “Turbulent transport reduction by zonal flows: Massively parallel simulations,” Science 281, 1835 (1998).
20I. Holod, W. L. Zhang, Y. Xiao, and Z. Lin, “Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry,” Phys. Plasmas 16(12), 122307 (2009).
21Z. Lin, W. M. Tang, and W. W. Lee, “Gyrokinetic particle simulation of neoclassical transport,” Phys. Plasmas 2(8), 2975–2988 (1995).
22Y. Xiao and Z. Lin, “Turbulent transport of trapped-electron modes in col- lisionless plasmas,” Phys. Rev. Lett. 103(8), 085004 (2009).
23W. Zhang, Z. Lin, and L. Chen, “Transport of energetic particles by micro- turbulence in magnetized plasmas,” Phys. Rev. Lett. 101(9), 095001 (2008).
24H. S. Zhang, Z. Lin, and I. Holod, “Nonlinear frequency oscillation of Alfv en eigenmodes in fusion plasmas,” Phys. Rev. Lett. 109(2), 025001 (2012).
25Z. Wang, Z. Lin, I. Holod, W. W. Heidbrink, B. Tobias, M. Van Zeeland, and M. E. Austin, “Radial localization of toroidicity-induced Alfv en eigenmodes,” Phys. Rev. Lett. 111(14), 145003 (2013).
Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.200.44.221 On: Wed, 04 May 2016 16:35:05


































































































   3   4   5   6   7