An Interesting Poster to look at from the Tri Alpha Energy Team in California
P. 1

                                                                                                                      Fusion-driven Liquid-phased Transmutator: Monitored and Controlled Real-time by CAN Laser and Gamma beams
      Gerard Mourou2, A. Necas1, T. Tajima1, S. Gales3, K. Hatfield1, M. Leroy4, J. Tanner1 and the Entire TAE Team
     Motivation
Spent nuclear fuel from current nuclear reactors generally managed by two distinct policies: once-through (U.S., Sw) and U/Pu recycling (Fr,J)
Policies influence storage duration due to long-lived radionuclides Radiotoxicity and decay heat from stored nuclear waste can be reduced if
1TAE Technologies: 19631 Pauling, Foothill Ranch, CA, 92610, anecas@tae.com 2 Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
3 Universite Paris-SUD, 15 Rue Georges Clemenceau, 91400 Orsay, France
4 University of Strasbourg, 4 Rue Blaise Pascal, 67081 Strasbourg, France
2
Laser Driven Fusion Neutron Source
Using CAIL - Coherent Acceleration of Ions by Laser
  transmutation assists recycling
Adjust nuclear waste concentration
by laser monitor
1 CANlaserand Gamma beam monitors
• • • • • • •
CAIL: Method to accelerate ions by irradiating nanometric foil with “CAN” laser
2D PIC simulation of laser/foil interaction with EPOCH [4]
Laser is modelled as a Gaussian pulse, linearly polarized, ultrashort (even single-cycle) and ultrahigh contrast
Foil modelled as a solid density plasma of deuterons and electrons: ne >> ncritical
Foil is nanometric to satisfy requirement: foil thickness < skin depth allowing the laser to partially penetrate the foil Ponderomotive force drives electrons out of the rear side of foil and ions interact via the electrostatic potential. [3] Experiments [2] support simulations
Theoretical max. energy (a=4)
Deuteron energy [keV]
Optimal target thickness for efficient Acceleration of Ions by Laser Deuteron energy vs. thickness of
foil
target thickness [normalized to laser intensity]
Optimum parameters (sweet-spot) for ion acceleration
 Neutronics -- externally driven system: MCNP/SCALE  Wall material:
 Corrosion assisted by molten salt
 Radiation damage by neutrons
 High temperature, fatigue (e.g. tellurium creep)
 Nuclear chemistry:
 Molten salt chemistry and chemical separation
Nuclear waste
and FLiBe solution In
3
   1
 Parameter
Value
Intensity*, W/cm2
5x1017
Pulse length, fs
45
Beam width, mm
3.6
Laser energy, mJ
6
Foil thickness, nm
10
Skin depth, nm
25.3
Electron density 1/cc
4.4x1022
Critical density 1/cc
1x1021
Rep rate, kHz
10
      1
2 Laser driven fusion neutrons
      G. Mourou
Liquid-phased molten FLiBe salt (operates under atmospheric pressure)
Real-time monitor and control (by laser and laser Compton gamma)
Subcritical operation (neutron multiplication driven by source)
Compact low intensity laser driven (CAN laser +CAIL) fusion neutron source
Energy catapulting:
100 keV/D+14 MeV/fusion200 MeV/fission x keff=0.98
BIBLIOGRAPHY
(1) Mourou, G., Brocklesby, B., Tajima, T. and Limpert, J., The future is fibre accelerators. Nature Photonics, 7(4), p.258 (2013).
(2) Steinke, S., Henig, A., Schnürer, M., Sokollik, T., Nickles, P.V., Jung, D., Kiefer, D., Hörlein, R., Schreiber, J., Tajima, T. and Yan, X.Q., Efficient ion acceleration by collective
laser-driven electron dynamics with ultra-thin foil targets. Laser and Particle Beams, 28(1), pp.215-221 (2010).
(3) Yan, X. Q., et al. "Theory of laser ion acceleration from a foil target of nanometer thickness." Applied Physics B 98.4
(2010): 711-721.
(4) Arber, T. D., et al. "Contemporary particle-in-cell approach to laser-plasma modelling." Plasma Physics and Controlled Fusion 57.11 (2015): 113001.
Transmuted nuclear waste
chemically separated out
4
        Conceptual Design
3
Nuclear Waste and FLiBe solution In
Numerical Transmutator
MCNP/CINDER90
4
Transmutated nuclear waste chemically seprated Out
Fission Products
39.2 Kg
Plutonium 20.76 Kg
Am 2.53 Kg Np 13.84 Kg
Cm 283.8 Kg
    Minor actinide σfission >> σcapture at source neutron energy
R2
R1
    Graphite reflector
  1 Year study - 100MW
 Input1 year burnOutput
      FP Pu Am Np Cm
         Americium 6.6 Kg
Neptunium 24.86 Kg
Curium 328.56 Kg
370
360
350
340
330
320
310
300
290
280
270
Steinke (2010); a0=5
         Neutron source isotropic at R=0
GEOMETRY
R1 =50cm
R2 = 80.48 cm
Tank axial length=2 m
     Initial tank composition
   ZAID
  Mass [g]
 ZAID
  Mass [g]
 Americium
 Curium
95241
4440
96242
576
95242
141.3
96243
3645
95243
2018
96244
284000
  Neptunium
96245
 36900
  93237
 24860
96246
 3357
  FLiBe [LiF-BeF2]
96247
 47.27
 3007
 510100
 96248
 3.258
 4009
 372000
 9019
 3258000
       Future Work
                Neutron source:
 Proof-of-Principle experiments with laser foil acceleration  Electrostatic accelerator viability
         0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546474849505152
Week
Total TRU burn 39.4 kg (11%)0.4 kg/MW
 Mass (Kg)
Energy
Deuteron distribution
   1