APS2019_poster_v8
P. 1

 Goals
1. Analysis – interpretive modeling of experiment
1. Infer plasma parameters and profiles from diagnostics
2. Estimate transport coefficients and confinement times
2. Simulation – predictive modeling of experiment
1. Validate models, suggest new operating scenarios
2. Predict behavior and help design next–step device
Integrated Modeling: Couple “Enough” Physics
1 TAE Technologies, Inc., 19631 Pauling, Foothill Ranch, CA 92610; 2D Thermal Equilibrium + Fast Ions
Full Orbit MC + Multi-Fluid Equilibrium, LReq
Fluid Equilibrium physics
à Multiple ion fluids; Rotation; Radial, axial force balance
à Magnets and wall shaping
à Resistive or conducting wall options
+ Monte Carlo Fast Ion Physics
à Anisotropic fast ion pressure
à Significant fast ion current
à Realistic equilibrium in advanced FRC with high fast ion pressure
à See F. Ceccherini UP10.00148 poster
Q2D Global Transport + Fast Ions
2 University of California Irvine, Irvine CA 92697, USA
3D Global Turbulent Transport
ANC code [1]
• First simulations of turbulent transport in the FRC geometry [2]
• Global nonlinear simulations between mirrors
Contact: sean@tae.com Website: www.tae.com 61st APS-DPP Meeting, Fort Lauderdale, FL, October 21–25, 2019
Recent Achievements
→ 1D interpretive equilibrium indicates field reversal - See S. Gupta UP10.00149 → 2D multifluid + kinetic ion equilibrium gives realistic equilibrium for use in
stability analysis
→ 2D global transport (fast ions + Hall MHD + neutrals) gives understandable model of interaction of electrode and NB actuators
→ Experiments proposed to validate model results → 3D global turbulence simulations
→ validated on experimental DBS observations on C-2U
→ Indicate Er shear suppression of edge turbulence;
→ Experiment in planning to apply Er shear at edge à active turbulence control?
Public Private Partnership
• DoE Leadership Computing Facility INCITE awards 2018 and 2019
• Collaboration with UCI GTC group,
• Collaboration with ORNL part of ECP CODAR team
• Open to further Public Private Partnership
External Actuator Models
Coupled core and SOL
B ~ 0 regions; O-point and X-points; Self-organization Fully kinetic ions
Multi-species: fast p, thermal D,
electrons, neutrals
Mirror sections; Loss cone physics
Expander Divertors; Parallel electron Dynamics, Pre-sheath, sheath
Neutrals
Kinetic thermal neutral model
Equilibrium
Multi ion species force balance
Surrogate Models
TBD
References
Beams
Kinetic neutral beam and fast ion model
Global Transport
Coupling of fluid, fast ions, neutral fluid; external coils, end biasing; synthetic experimental diagnostics
Perpendicular Transport
Kinetic microturbulence (TAE/UCI collaboration)
RF Heating
ECH – Ray tracing HHFW – Full wave
Global Stability
Parallel Transport
Electron dynamics in SOL and divertor
Electrode biasing; Rotation, Heating
RF
NB Injection;
Current drive & heating;
Pulsed power, Magnetics
Plasma Models
→
→
→
→
Assumed Er shear profile, determined by equilibrium properties and applied biasing, affects mode growth rate
Electrode biasing is a potential actuator to reduce transport in SOL
Planning experimental campaign to study
See X. Wei, W. Wang et al, UP10.00097 poster :
Hierarchy of Plasma Models
Analysis codes
Simulation codes
0.8 0.6 0.4 0.2
E = 3.27
E = 4.52 exp(-3E/S*)
Growth rate vs Er shear
Linear eigenmode structure, #$
%&×( = 0
%&×( = 0.57 = ./
Power balance;
fluid/kinetic global transport multi-ion equilibrium solver fluid plasma global dynamics Monte Carlo fast ion transport
UP10.00126, Clary et al UP10.00149, Gupta et al
APS 2010, Mok et al
UP10.00133, Player et al UP10.00143, Granstedt et al APS 2018, Onofri et al
APS 2017, Ceccherini et al APS 2017, Gupta et al
APS 2015, Dettrick et al APS 2017, Fulton et al APS 2017, Bao et al
• 0D–
• 1D–Q1D
• 2D – LReq
• 2D–LR
• 2D–MC
• 3D – DEGAS2 Monte Carlo neutral transport
• 2D – Q2D fluid/kinetic global transport
• 2D – RF full wave RF code
• 3D – KSOL kinetic parallel electron dynamics • 3D – FPIC fluid/kinetic global stability
• 3D – ANC,
control systems on global stability • Arbitrary boundary shape
• MPI / OpenMP model (ALCF Theta) • MPI / CUDA model
Linear eigenmode structure, #$
GTC-X kinetic micro-turbulent transport
•
•
•
Integrated Modeling of Stability and Transport of FRC Plasmas
S.A. Dettrick1, J. Bao2, D.C. Barnes1, F. Ceccherini1, L. Galeotti1, S. Gupta1, K. Hubbard1, C.K. Lau1, Z. Lin2, Y. Mok1, A. Necas1, M. Onofri1, S. Putvinski1, P. Yushmanov1, T. Tajima1,2, and the TAE team
γ/γMHD
→ See C.K. Lau, UP10.00151 poster
→ C.K. Lau, NM9.00007 HPC mini-conf. talk
I"
3D Global Stability
FPIC 3D Hybrid Kinetic/Fluid PIC code Goal: Simulate influence of actuators and
Future: Whole Device Model
•
•
Benchmarked against FRC tilt mode Actuators
electrode biasing magnetic fields shape neutral beams.
→ See F. Ceccherini UP10.00148 poster for first NB actuator simulations
Simulations used the resources of DOE Office of Science User Facilities: National Energy Research Scientific Computing Center (DOE Contract No. DE-AC02-05CH11231) and Innovative and Novel
Computational Impact on Theory and Experiment (INCITE) program at Argonne Leadership Computing Facility at Argonne National Laboratory (DOE Contract No. DE-AC02-06CH11357).
Q2D = Full Orbit MC + 2D thermal fluid
Global Transport physics
à Multi-species (fast ions + Hall MHD + neutrals)
à Self-organization and relaxation
à Expander divertor physics
à Neutral transport
à See M. Onofri UP10.00153 poster Actuators
à Neutral Beam heating and current drive
à Electrode biasing effect on rotation
à Understandable model of interacting actuators and affect on 2D global transport
0
0.1
0.2
0.3
0.4
0.5
0.6
1. D. Fulton, et al. Phys. Plasmas, 23, 012509 (2016) 2. C. Lau, et al. Nuclear Fusion 59, 066018 (2019)
3. L. Schmitz et al, Nature Comm. 7, 13860 (2016)
4. J. Bao, et al. Phys. Plasmas, 26, 042506 (2019)
5. F. Ceccherini, et al. APS DPP-Meeting PP.11.99 (2018) 6. S. Dettrick, et al. APS DPP-Meeting PP.11.97 (2018) 7. E. Belova, et al. Phys. Plasmas 8, 1267 (2001)
Acknowledgements
E/S*
→
→
→
Micro-instabilities arise in SOL; fluctuations can spread to quiescent core
Toroidal wavenumber spectra consistent with experimentally measured spectra [3]
Electrostatic so far; upcoming DBS/Polarimetry measurements will verify validity of approximation
GTC-X code [4]
• Global linear simulations of ITG instabilities in extended domain [4] • Simulations of ITG instabilities in sheared electric field in SOL
   1