Page 8 - Outer Divertor Damage Characterization from Deuterium Plasma Bombardment in Graphene-Coated Tungsten
P. 8

OUTER DIVERTOR DAMAGE CHARACTERIZATION FROM DEUTERIUM PLASMA BOMBARDMENT · NAVARRO et al. 549
 Fig. 8. Weight gain comparison for exposed samples in C-2W. The amount of impurities collected due to erosion from other critical components in the divertor on the bare tungsten sample is as much as twice the amount as in the graphene-coated sample. The error in the measurements is 2 × 10–2 g/m2 for both samples.
Department of Energy, Office of Science, Basic Energy Sciences Award DEFG02-03ER46028. We acknowledge the use of facilities and instrumentation supported by the National Science Foundation through the University of Wisconsin Materials Research Science and Engineering Center, DMR-1121288.
6. M. J. BALDWIN and R. P. DOERNER, “Formation of Helium Induced Nanostructure ‘Fuzz’ on Various Tungsten Grades,” J. Nucl. Mater., 404, 3, 165 (2010); https://doi.org/10.1016/j.jnucmat.2010.06.034.
7. S. KAJITA et al., “Formation Process of Tungsten Nanostructure by the Exposure to Helium Plasma Under Fusion Relevant Plasma Conditions,” Nucl. Fusion, 49, 9 (2009); https://doi.org/10.1088/0029-5515/49/9/095005.
8. J. ROTH et al., “Recent Analysis of Key Plasma Wall Interactions Issues for ITER,” J. Nucl. Mater., 390–391, 1, 1 (2009); https://doi.org/10.1016/j.jnucmat.2009.01.037.
9. M. J. BALDWIN et al., “The Effects of High Fluence Mixed-Species (Deuterium, Helium, Beryllium) Plasma Interactions with Tungsten,” J. Nucl. Mater., 390–391, 1, 886 (2009); https://doi.org/10.1016/j.jnucmat.2009.01.247.
10. R. P. DOERNER, “Sputtering in a High-Flux Plasma Environment,” Scr. Mater., 143, 137 (2018); https://doi. org/10.1016/j.scriptamat.2017.06.045.
11. R. P. DOERNER, M. J. BALDWIN, and P. C. STANGEBY, “An Equilibrium Model for Tungsten Fuzz in an Eroding Plasma Environment,” Nucl. Fusion, 51, 4 (2011); https://doi. org/10.1088/0029-5515/51/4/043001.
12. S. J. ZENOBIA, L. M. GARRISON, and G. L. KULCINSKI, “The Response of Polycrystalline Tungsten to 30 keV Helium Ion Implantation at Normal Incidence and High Temperatures,” J. Nucl. Mater., 425, 1–3, 83 (2012); https:// doi.org/10.1016/j.jnucmat.2011.10.029.
13. K. TOKUNAGA et al., “Synergistic Effects of High Heat Loading and Helium Irradiation of Tungsten,” J. Nucl. Mater., 329–333, 1–3, Part A, 757 (2004); https://doi.org/ 10.1016/j.jnucmat.2004.04.178.
14. A. K. GEIM and K. S. NOVOSELOV, “The Rise of Graphene,” Nat. Mater., 6, 3, 183 (2007); https://doi.org/ 10.1038/nmat1849.
15. A. H. CASTRO NETO et al., “The Electronic Properties of Graphene,” Rev. Mod. Phys., 81, 109 (2009); https://doi. org/10.1103/RevModPhys.81.109.
16. E. H. ÅHLGREN et al., “Ion Irradiation Tolerance of Graphene as Studied by Atomistic Simulations,” Appl. Phys. Lett., 100, 23 (2012); https://doi.org/10.1063/1.4726053.
17. E. DESPIAU-PUJO et al., “Elementary Processes of H2 Plasma-Graphene Interaction: A Combined Molecular Dynamics and Density Functional Theory Study,” J. Appl. Phys., 113, 11, 114302 (2013); https://doi.org/10.1063/1. 4794375.
18. C. HERBIG and T. MICHELY, “Graphene: The Ultimately Thin Sputtering Shield,” 2D Mater., 3, 2, 025032 (2016); https://doi.org/10.1088/2053-1583/3/2/025032.
19. P. AHLBERG et al., “Defect Formation in Graphene During Low-Energy Ion Bombardment,” APL Mater., 4, 4, 046104 (2016); https://doi.org/10.1063/1.4945587.
ORCID
Marcos X. Navarro
7774
References
http://orcid.org/0000-0002-0267-
1. M. TUSZEWSKI, “Field Reversed Configurations,” Nucl. Fusion, 28, 11, 2033 (1988); https://doi.org/10.1088/0029- 5515/28/11/008.
2. L. C. STEINHAUER, “Review of Field-Reversed Configurations,” Phys. Plasmas, 18, 7, 1 (2011); https://doi. org/10.1063/1.3613680.
3. H. GOTA et al., “Achievement of Field-Reversed Configuration Plasma Sustainment via 10 MW Neutral-Beam Injection on the C-2U Device,” Nucl. Fusion, 57, 116021, 1 (2017); https://doi.org/10.1088/1741-4326/aa7d7b.
4. M. W. BINDERBAUER et al., “Recent Breakthroughs on C-2U: Norman’s Legacy,” AIP Conf. Proc., 1721, 1 (2016); doi:https://doi.org/10.1063/1.4944019.
5. M. W. BINDERBAUER et al., “A High Performance Field-Reversed Configuration,” Phys. Plasmas, 22, 056110, 1 (2015); https://doi.org/10.1063/1.4920950.
FUSION SCIENCE AND TECHNOLOGY · VOLUME 75 · AUGUST 2019







































































   5   6   7   8   9