Page 9 - Outer Divertor Damage Characterization from Deuterium Plasma Bombardment in Graphene-Coated Tungsten
P. 9

550 NAVARRO et al. · OUTER DIVERTOR DAMAGE CHARACTERIZATION FROM DEUTERIUM PLASMA BOMBARDMENT
20. M. X. NAVARRO et al., “Implantation of 30 keV Helium into Graphene-Coated Tungsten,” Fusion Sci. Technol., 72, 4, 713 (2017); https://doi.org/10.1080/15361055.2017.1350481.
21. S. KUMAR et al., “Radiation Stability of Graphene Under Extreme Conditions,” Appl. Phys. Lett., 105, 13 (2014); https://doi.org/10.1063/1.4897004.
22. J. ZUBELTZU et al., “Knock-On Damage in Bilayer Graphene: Indications for a Catalytic Pathway,” Phys. Rev. B, 88, 24, 1 (2013); https://doi.org/10.1103/PhysRevB.88.245407.
23. I. VLASSIOUK et al., “Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene,” ACS Nano, 5, 7, 6069 (2011); https://doi.org/ 10.1021/nn201978y.
24. L. G. CANÇADO et al., “Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies,” Nano Lett., 11, 8, 3190 (2011); https://doi.org/10.1021/ nl201432g.
25. L. M. MALARD et al., “Raman Spectroscopy in Graphene,” Phys. Rep., 473, 5–6, 51 (2009); https://doi. org/10.1016/j.physrep.2009.02.003.
26. M. E. GRISWOLD et al., “Particle and Heat Flux Diagnostics on the C-2W Divertor Electrodes,” Rev. Sci. Instrum., 89, 10, 10J110 (2018); https://doi.org/10.1063/1.5038752.
27. A. C. FERRARI and D. M. BASKO, “Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene,” Nat. Nanotechnol., 8, 4, 235 (2013); https:// doi.org/10.1038/nnano.2013.46.
28. M. A. PIMENTA et al., “Studying Disorder in Graphite-Based Systems by Raman Spectroscopy,” Phys. Chemistry Chem. Phys., 9, 11, 1276 (2007); https://doi.org/ 10.1039/B613962K.
29. M. MIAO et al., “First Principles Study of the Permeability of Graphene to Hydrogen Atoms,” Phys. Chemistry Chem.
Phys., 15, 38, 16132 (2013); https://doi.org/10.1039/ c3cp52318g.
30. M. M. LUCCHESE et al., “Quantifying Ion-Induced Defects and Raman Relaxation Length in Graphene,” Carbon, 48, 5, 1592 (2010); https://doi.org/10.1016/j.car bon.2009.12.057.
31. A. C. FERRARI, “Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects,” Solid State Commun., 143, 1–2, 47 (2007); https://doi.org/10.1016/j.ssc.2007.03.052.
32. A. KOZBIAL et al., “Study on the Surface Energy of Graphene by Contact Angle Measurements,” Langmuir, 30, 28, 8598 (2014); https://doi.org/10.1021/la5018328.
33. C. D. VAN ENGERS et al., “Direct Measurement of the Surface Energy of Graphene,” Nano Lett., 17, 6, 3815 (2017); https://doi.org/10.1021/acs.nanolett.7b01181.
34.R. KUMAR and H. GRENGA, “Surface Energy Anisotropy of Tungsten,” Surf. Sci., 59, 612 (1976); https://doi.org/10.1016/0039-6028(76)90039-X.
35. E. N. HODKIN, M. G. NICHOLAS, and D. M. POOLE, “The Surface Energies of Solid Molybdenum, Niobium, Tantalum and Tungsten,” J. Less-Common Met., 20, 2, 93 (1970); https://doi.org/10.1016/0022-5088(70)90093-7.
36. S. SCHÖNECKER et al., “Thermal Surface Free Energy and Stress of Iron,” Sci. Rep., 5, 1 (2015); https://doi.org/ 10.1038/srep14860.
37. B. C. ALLEN, “The Interfacial Free Energies of Solid Chromium, Molybdenum and Tungsten,” J. Less-Common Met., 29, 3, 263 (1972); https://doi.org/10.1016/0022- 5088(72)90114-2.
38. B. J. KEENE, “Review of Data for the Surface Tension of Pure Metals,” Int. Mater. Rev., 38, 4, 157 (1993); https:// doi.org/10.1179/imr.1993.38.4.157.
FUSION SCIENCE AND TECHNOLOGY · VOLUME 75 · AUGUST 2019













































































   5   6   7   8   9