Page 13 - Electrostatic quasi-neutral formulation of global cross-separatrix particle simulation in field-reversed configuration geometry
P. 13

 Physics of Plasmas ARTICLE
 In Fig. 11, the results of these comparison tests are shown: (a) poloidal plane R-Z trajectories of electrons near or at the turning point of the FRC core; (b) velocity space, parallel and perpendicular relative to the magnetic field, which shows that the electrons have not changed in energy much during this time (magnitude stays almost constant here); (c) toroidal phase space, which shows a slight toroidal drift; and (d) the delta-f weight evolution over time. The grid cells are also plotted in the corresponding color for context (not shown for the direct calculation case since it does not matter), and “ip” is the tracking label of the particle. Only a subset of the electrons tracked are shown to avoid confusion.
With respect to interpolation from field-aligned mesh to par- ticles, note that position updates are indirectly affected via velocity, the velocity updates are directly affected, and the delta-f weight updates are both directly affected and indirectly affected via position and velocity. The R-Z trajectory, the azimuthal phase space, and the velocity space are all indistinguishable (10􏰁6%–10􏰁5 % difference for positions and 10􏰁4%–10􏰁3 % difference for velocities, when compared to the direct calculation). On the other hand, the delta-f weight has some noticeable differences (0:1% 􏰁 1% difference, when compared to the direct calculation) since it is more sensitive to the velocity and position differences. In all aspects, these differences decrease as the grid resolution is increased as expected. For this particular case of this test function, no significant change is seen when increasing the num- ber of w cells in the core from 60 to 90.
DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
1L. Schmitz, E. Ruskov, B. H. Deng, H. Gota, D. Gupta, M. Tuszewski, J. Douglass, W. A. Peebles, M. Binderbauer, and T. Tajima, “Multi-channel dopp- ler backscattering measurements in the C-2 field reversed configuration,” Rev. Sci. Instrum. 85(11), 11D840 (2014).
2L. Schmitz, D. P. Fulton, E. Ruskov, C. Lau, B. H. Deng, T. Tajima, M. W. Binderbauer, I. Holod, Z. Lin, H. Gota et al., “Suppressed ion-scale turbulence in a hot high-b plasma,” Nat. Commun. 7, 13860 (2016).
3I. Holod, W. L. Zhang, Y. Xiao, and Z. Lin, “Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry,” Phys. Plasmas 16(12), 122307 (2009).
4D. P. Fulton, C. K. Lau, I. Holod, Z. Lin, and S. Dettrick, “Gyrokinetic particle simulation of a field reversed configuration,” Phys. Plasmas (1994-present) 23(1), 012509 (2016).
5D. P. Fulton, C. K. Lau, L. Schmitz, I. Holod, Z. Lin, T. Tajima, and M. W. Binderbauer, and TAE Team, “Gyrokinetic simulation of driftwave instability in field-reversed configuration,” Phys. Plasmas 23(5), 056111 (2016).
6C. K. Lau, D. P. Fulton, I. Holod, Z. Lin, M. Binderbauer, T. Tajima, and L. Schmitz, “Drift-wave stability in the field-reversed configuration,” Phys. Plasmas 24(8), 082512 (2017).
7C. K. Lau, “Electrostatic turbulence and transport in the field-reversed configu- ration,” Ph.D. thesis (UC, Irvine, 2017).
8C. K. Lau, D. P. Fulton, J. Bao, Z. Lin, T. Tajima, L. Schmitz, S. Dettrick, and TAE Team, “Cross-separatrix simulations of turbulent transport in the field- reversed configuration,” Nucl. Fusion 59(6), 066018 (2019).
9J. Bao, C. K. Lau, Z. Lin, H. Y. Wang, D. P. Fulton, S. Dettrick, and T. Tajima, “Global simulation of ion temperature gradient instabilities in a field-reversed configuration,” Phys. Plasmas 26(4), 042506 (2019).
10Y. Hayakawa, T. Takahashi, and Y. Kondoh, “Classification of particle orbits and related stochasticity of plasma ion motion in a field-reversed configuration
11 with d-3he advanced fuel,” Nucl. Fusion 42(9), 1075 (2002).
L. Galeotti, D. C. Barnes, F. Ceccherini, and F. Pegoraro, “Plasma equilibria with multiple ion species: Equations and algorithm,” Phys. Plasmas (1994-pre- sent) 18(8), 082509 (2011).
12R. H. Cohen, A. Friedman, D. P. Grote, and J.-L. Vay, “Large-timestep mover for particle simulations of arbitrarily magnetized species,” Nucl. Instrum.
13Methods Phys. Res., Sect. A 577(1–2), 52–57 (2007).
T. Tajima, “Computational plasma physics. with applications to fusion and
14astrophysics,” Front. Phys. 72, 1 (1989).
T. Tajima and F. Perkins, in Proceedings of the Sherwood Theory Conference, 1983.
15A. Y. Aydemir, “A unified monte carlo interpretation of particle simulations and applications to non-neutral plasmas,” Phys. Plasmas 1(4), 822–831
16(1994).
Z. Lin, W. M. Tang, and W. W. Lee, “Gyrokinetic particle simulation of neo-
17classical transport,” Phys. Plasmas 2(8), 2975–2988 (1995).
Y. Xiao, I. Holod, Z. X. Wang, Z. Lin, and T. Zhang, “Gyrokinetic particle simu- lation of microturbulence for general magnetic geometry and experimental profiles,” Phys. Plasmas 22(2), 022516 (2015).
18F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer, 1984), Vol. 1.
19Z. Gao, H. Sanuki, K. Itoh, and J. Q. Dong, “Temperature gradient driven short wavelength modes in sheared slab plasmas,” Phys. Plasmas 10(7), 2831–2839 (2003).
20Z. Gao, H. Sanuki, K. Itoh, and J. Q. Dong, “Short wavelength ion tempera- ture gradient instability in toroidal plasmas,” Phys. Plasmas 12(2), 022502 (2005).
21J. Chowdhury, R. Ganesh, J. Vaclavik, S. Brunner, L. Villard, and P. Angelino, “Short wavelength ion temperature gradient mode and coupling with trapped electrons,” Phys. Plasmas 16(8), 082511 (2009).
22M. W. Binderbauer, T. Tajima, L. C. Steinhauer, E. Garate, M. Tuszewski, L. Schmitz, H. Y. Guo, A. Smirnov, H. Gota, D. Barnes, B. H. Deng, M. C. Thompson, E. Trask, X. Yang, S. Putvinski, N. Rostoker, R. Andow, S. Aefsky, N. Bolte, D. Q. Bui, F. Ceccherini, R. Clary, A. H. Cheung, K. D. Conroy, S. A. Dettrick, J. D. Douglass, P. Feng, L. Galeotti, F. Giammanco, E. Granstedt, D. Gupta, S. Gupta, A. A. Ivanov, J. S. Kinley, K. Knapp, S. Korepanov, M. Hollins, R. Magee, R. Mendoza, Y. Mok, A. Necas, S. Primavera, M. Onofri, D. Osin, N. Rath, T. Roche, J. Romero, J. H. Schroeder, L. Sevier, A. Sibley, Y. Song, A. D. Van Drie, J. K. Walters, W. Waggoner, P. Yushmanov, K. Zhai, and TAE Team, “A high performance field-reversed configuration,” Phys. Plasmas 22(5), 056110 (2015).
23
H. Gota, M. W. Binderbauer, T. Tajima, S. Putvinski, M. Tuszewski, B. H. Deng, S. A. Dettrick, D. K. Gupta, S. Korepanov, R. M. Magee et al., “Formation of hot, stable, long-lived field-reversed configuration plasmas on the c-2w device,” Nucl. Fusion 59(11), 112009 (2019).
scitation.org/journal/php
  Phys. Plasmas 27, 082504 (2020); doi: 10.1063/5.0012439 Published under license by AIP Publishing
27, 082504-13





























































   9   10   11   12   13