Page 11 - Detection and prediction of a beam-driven mode in field-reversed configuration plasma with recurrent neural networks
P. 11
Nucl. Fusion 60 (2020) 126025
C. Scott et al
[24] Chauhan S. and Vig L. 2015 Anomaly detection in ECG time signals via deep long short-term memory networks 2015 IEEE Int. Conf. on Data Science and Advanced Analytics (DSAA) IEEE pp 1–7
[25] Malhotra P., Vig L., Shroff G. and Agarwal P. 2015 Long short term memory networks for anomaly detection in time series Proc. vol 89 Presses universitaires de Louvain pp 89–94
[26] Farias G., Fabregas E., Dormido-Canto S., Vega J. and Vergara S. 2020 Automatic recognition of anomalous patterns in discharges by recurrent neural networks Fusion Eng. Des. 154 111495
[27] Rosseau A. 2019 Applications of anomaly detection for predictive maintenance at the JET tokamak Ph.D. thesis Ghent University (https://www.scriptieprijs.be/sites/ default/files/thesis/2019-10/AndriesRosseau_Applications OfAnormalyDetectionForPredictiveMaintenanceAtThe JETTokamak_2019,pdf')
[28] Thompson M.C. et al 2012 Magnetic diagnostic suite of the C-2 field-reversed configuration
experiment confinement vessel Rev. Sci. Instrum. 83 10D709
[29] Gota H. et al 2019 Formation of hot, stable, long-lived field-reversed configuration plasmas on the C-2W device Nucl. Fusion 59 112009
[30] Thompson M.C. et al 2018 Integrated diagnostic and data analysis system of the C-2W advanced beam-driven field-reversed configuration plasma experiment Rev. Sci. Instrum.
89 10K114
[31] Deichuli P., Davydenko V., Ivanov A., Korepanov S.,
Mishagin V., Smirnov A., Sorokin A. and Stupishin N. 2015 Low energy, high power hydrogen neutral
beam for plasma heating Rev. Sci. Instrum.
86 113509
11