Page 8 - Compact Toroid Injection Fueling in a Large Field-Reversed Configuration
P. 8
082512-8 Lau et al.
Phys. Plasmas 24, 082512 (2017)
2N. Rostoker, “Closing remarks,” in Physics of High Energy Particles in Toroidal Systems, edited by T. Tajima and M. Okamoto (AIP Publishing, 1994), Vol. 1.
3M. W. Binderbauer and N. Rostoker, “Turbulent transport in magnetic confinement: How to avoid it,” J. Plasma Phys. 56, 451–465 (1996).
4D. C. Barnes, J. L. Schwarzmeier, H. R. Lewis, and C. E. Seyler, “Kinetic tilting stability of field-reversed configurations,” Phys. Fluids 29(8), 2616–2629 (1986).
5H. Naitou, T. Kamimura, and J. M. Dawson, “Kinetic effects on the con- vective plasma diffusion and the heat transport,” J. Phys. Soc. Jpn. 46(1), 258–265 (1979).
6R. Horiuchi and T. Sato, “Full magnetohydrodynamic simulation of the tilting instability in a field reversed configuration,” Phys. Fluids B 1(3), 581–590 (1989).
7W. W. Heidbrink and G. J. Sadler, “The behaviour of fast ions in tokamak experiments,” Nucl. Fusion 34(4), 535 (1994).
8M. Rosenbluth, N. Krall, and N. Rostoker, “Finite Larmour radius stabili- zation of “weakly” unstable confined plasmas,” Nucl. Fusion Supp. 1, 143 (1962), available at https://www.osti.gov/scitech/biblio/4808729.
9M. W. Binderbauer, H. Y. Guo, M. Tuszewski, S. Putvinski, L. Sevier, D. Barnes, N. Rostoker, M. G. Anderson, R. Andow, L. Bonelli et al., “Dynamic formation of a hot field reversed configuration with improved confinement by supersonic merging of two colliding high-b compact toroids,” Phys. Rev. Lett. 105, 045003 (2010).
10H. Guo, M. Binderbauer, T. Tajima, R. Milroy, L. Steinhauer, X. Yang, E. Garate, H. Gota, S. Korepanov, A. Necas et al., “Achieving a long-lived high-beta plasma state by energetic beam injection,” Nat. Commun. 6, 6897 (2015).
11M. Tuszewski, A. Smirnov, M. C. Thompson, T. Akhmetov, A. Ivanov, R. Voskoboynikov, D. C. Barnes, M. W. Binderbauer, R. Brown, D. Q. Bui et al., “A new high performance field reversed configuration operating regime in the c-2 device,” Phys. Plasmas 19(5), 056108 (2012).
12M. W. Binderbauer, T. Tajima, L. C. Steinhauer, E. Garate, M. Tuszewski, L. Schmitz, H. Y. Guo, A. Smirnov, H. Gota, D. Barnes et al., “A high per- formance field-reversed configuration,” Phys. Plasmas 22(5), 056110 (2015).
13S. Hamasaki and D. Book, “Numerical simulation of the anomalous trans- port process in radially compressed reversed-field configurations,” Nucl. Fusion 20(3), 289 (1980).
14M. Tuszewski and R. K. Linford, “Particle transport in field-reversed con- figurations,” Phys. Fluids 25(5), 765–774 (1982).
15A. L. Hoffman, R. D. Milroy, and L. C. Steinhauer, “Poloidal flux loss in a field-reversed theta pinch,” Appl. Phys. Lett. 41, 31–33 (1982).
16A. W. Carlson, “A search for lower-hybrid-drift fluctuations in a field- reversed configuration using CO2 heterodyne scattering,” Phys. Fluids 30(5), 1497–1509 (1987).
17D. Winske and P. C. Liewer, “Particle simulation studies of the lower hybrid drift instability,” Phys. Fluids 21(6), 1017–1025 (1978).
18J. U. Brackbill, D. W. Forslund, K. B. Quest, and D. Winske, “Nonlinear evolution of the lower-hybrid drift instability,” Phys. Fluids 27(11), 2682–2693 (1984).
19N. T. Gladd, A. G. Sgro, and D. W. Hewett, “Microstability properties of the sheath region of a field-reversed configuration,” Phys. Fluids 28(7), 2222–2234 (1985).
20N. T. Gladd, J. F. Drake, C. L. Chang, and C. S. Liu, “Electron tempera- ture gradient driven microtearing mode,” Phys. Fluids 23(6), 1182–1192 (1980).
21R. K. Linford, “Los Alamos compact toroid, fast liner, and high-density z- pinch programs,” in Unconventional Approaches to Fusion, edited by B. Brunelli and G. G. Leotta (Plenum Press, New York and London, 1982), Vol. 13, p. 463.
22A. L. Hoffman and R. D. Milroy, “Particle lifetime scaling in field- reversed configurations based on lower-hybrid-drift resistivity,” Phys. Fluids 26(11), 3170–3172 (1983).
23S. P. Auerbach and W. C. Condit, “Classical diffusion in a field-reversed mirror,” Nucl. Fusion 21(8), 927 (1981).
24K. Nguyen and T. Kammash, “Classical transport coefficients in a field- reversed configuration,” Plasma Phys.. 24(2), 177 (1982).
25R. A. Clemente and C. E. Grillo, “Internal tilting and classical transport for field-reversed configurations based on the Maschke-Hernegger sol- ution,” Phys. Fluids 27(3), 658–660 (1984).
26R. A. Clemente and E. M. Freire, “Classical particle-diffusion time for analytical compact tori equilibria,” Plasma Phys. Controlled Fusion 28(7), 951 (1986).
27Y. Aso, S. Himeno, and K. Hirano, “Experimental studies on energy trans- port in a reversed-field theta pinch,” Nucl. Fusion 23(6), 751 (1983).
28D. J. Rej and M. Tuszewski, “A zero-dimensional transport model for field-reversed configurations,” Phys. Fluids 27(6), 1514–1520 (1984).
29S. Hamada, “A model of equilibrium transport and evolution of field reversed configurations,” Nucl. Fusion 26(6), 729 (1986).
30D. C. Quimby, A. L. Hoffman, and G. C. Vlases, “Linus cycle calculations including plasma transport and resistive flux loss,” Nucl. Fusion 21(5), 553 (1981).
31E. J. Caramana, “The long-time evolution approximation for a quasi-one- dimensional plasma system,” Phys. Fluids 28(12), 3557–3566 (1985).
32K. A. Werley, “One-and-a-quarter-dimensional transport modeling of the field-reversed configuration,” Phys. Fluids 30(7), 2129–2138 (1987).
33D. E. Shumaker, “Transport simulation of a field-reversed configuration plasma,” Fusion Sci. Technol. 13, 555 (1988).
34M. Binderbauer, T. Tajima, M. Tuszewski, L. Schmitz, A. Smirnov, H. Gota, E. Garate, D. Barnes, B. Deng, E. Trask et al., “Recent break- throughs on c-2u: Norman’s legacy,” in The Physics of Plasma-Driven Accelerators and Accelerator-Driven Fusion: The Proceedings of Norman Rostoker Memorial Symposium, edited by T. Tajima and M. Binderbauer (AIP Publishing, Melville, NY, 2016), p. 030003.
35L. Schmitz, D. Fulton, E. Ruskov, C. Lau, B. Deng, T. Tajima, M. Binderbauer, I. Holod, Z. Lin, H. Gota et al., “Suppressed ion-scale turbu- lence in a hot high-b plasma,” Nat. Commun. 7, 13860 (2016).
36S. Gupta, D. Barnes, S. Dettrick, E. Trask, M. Tuszewski, B. Deng, H. Gota, D. Gupta, K. Hubbard, S. Korepanov et al., “Transport studies in high-performance field reversed configuration plasmas,” Phys. Plasmas 23(5), 052307 (2016).
37M. Y. Hsiao, K. A. Werley, and K. M. Ling, “CFRX, a one-and-a-quarter- dimensional transport code for field-reversed configuration studies,” Comput. Phys. Commun. 54(2), 329–352 (1989).
38I. Holod, W. L. Zhang, Y. Xiao, and Z. Lin, “Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry,” Phys. Plasmas 16(12), 122307 (2009).
39Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, “Turbulent transport reduction by zonal flows: Massively parallel simulations,” Science 281, 1835 (1998).
40D. Fulton, C. Lau, I. Holod, Z. Lin, and S. Dettrick, “Gyrokinetic particle simulation of a field reversed configuration,” Phys. Plasmas 23(1), 012509 (2016).
41D. Fulton, C. Lau, L. Schmitz, I. Holod, Z. Lin, T. Tajima, M. Binderbauer, and TAE Team, “Gyrokinetic simulation of driftwave insta- bility in field-reversed configuration,” Phys. Plasmas 23, 056111 (2016).
42A. B. Mikhailovskii, “Weakly inhomogeneous collisionless plasma,” in
The Theory of Plasma Instabilities: Instabilities of an Inhomogeneous
Plasma (Springer US, New York, 1974), Vol. 2, p. 49.
43T. Tajima, “Guiding-center method,” in Computational Plasma Physics:
With Applications to Fusion and Astrophysics (Addison-Wesley, Redwood
City, CA, 1989), Vol. 1, p. 189.
44L. Pearlstein and H. Berk, “Universal eigenmode in a strongly sheared
magnetic field,” Phys. Rev. Lett. 23(5), 220 (1969).
45D. W. Ross and S. M. Mahajan, “Are drift-wave eigenmodes unstable?,”
Phys. Rev. Lett. 40(5), 324 (1978).
46K. Tsang, J. Whitson, J. Callen, P. Catto, and J. Smith, “Drift Alfven
waves in tokamaks,” Phys. Rev. Lett. 41(8), 557 (1978).
47R. Sydora, J. Leboeuf, and T. Tajima, “Particle simulation of drift waves
in a sheared magnetic field,” Phys. Fluids 28(2), 528–537 (1985).
48S. Hirshman and K. Molvig, “Turbulent destabilization and saturation of the universal drift mode in a sheared magnetic field,” Phys. Rev. Lett.
42(10), 648 (1979).
49C. Cheng and L. Chen, “Unstable universal drift eigenmodes in toroidal
plasmas,” Phys. Fluids 23(9), 1770–1773 (1980).
50L. Chen, M. Chance, and C. Cheng, “Absolute dissipative drift-wave insta-
bilities in tokamaks,” Nucl. Fusion 20(7), 901 (1980).
51J. Connor, R. Hastie, and J. Taylor, “Stability of general plasma equilibria.
III,” Plasma Phys. 22(7), 757 (1980).
52M. LeBrun, T. Tajima, M. Gray, G. Furnish, and W. Horton, “Toroidal
effects on drift wave turbulence,” Phys. Fluids B 5(3), 752–773 (1993). 53Y. Kishimoto, T. Tajima, W. Horton, M. LeBrun, and J. Kim, “Theory of self-organized critical transport in tokamak plasmas,” Phys. Plasmas 3(4),
1289–1307 (1996).
54Z. Lin, I. Holod, L. Chen, P. H. Diamond, T. S. Hahm, and S. Ethier,
“Wave-particle decorrelation and transport of anisotropic turbulence in collisionless plasmas,” Phys. Rev. Lett. 99(26), 265003 (2007).