Page 8 - Gyrokinetic particle simulation of a field reversed configuration
P. 8
052307-8 Gupta et al.
Phys. Plasmas 23, 052307 (2016)
diffusion seems to be nearly 5 times classical, the ion ther- mal conduction is nearly classical, electron thermal conduc- tion is 20 times classical, and the behavior of fast particles is classical. All these coefficients are fixed at the start of the simulation and the transport coefficient are evolved due to evolving local plasma parameters such as temperature Teðr;tÞ as a function of radial position and time through the classical parametric dependencies. The simulated time evo- lution of plasma parameters agrees well with the experimen- tally observed profiles. These coefficients are consistent with the experimental observation of only electron scale turbu- lence in the FRC core measured using multi-channel Doppler Backscattering.38
The numerical analysis also indicates that fast particles due to neutral beams affect the dynamics of the FRC in mul- tiple ways: (1) direct plasma heating, (2) relaxation of plasma profiles in response to the buildup of fast particle cur- rent, and (3) current drive due to the anomalous plasma resis- tivity in comparison to classical behavior of fast particles, i.e., effective Ohkawa current. These effects in combination lead to poloidal flux sustainment for nearly 1 ms in FRC. The calculated flux input rate is around 3.9 Wb/s.
The numerical transport analysis of C-2 HPF plasma has shown an agreement with experimental transport observa- tions of C-2 HPF. Due to large ion orbits, there seems to be a need for a kinetic study of transport properties of HPF plas- mas. The present study lays a foundation for future in-depth kinetic study of transport properties of HPF plasmas. It should also be interesting to see how the present transport properties are influenced by the FRC’s unique behavior, such as that arising from large orbit particles.35–37
ACKNOWLEDGMENTS
We thank our investors for their support of Tri Alpha Energy and the TAE team for their contribution to this project.
1M. W. Binderbauer, T. Tajima, L. C. Steinhauer, E. Garate, M. Tuszewski, L. Schmitz, H. Y. Guo, A. Smirnov, H. Gota, D. Barnes, B. H. Deng, M. C. Thompson, E. Trask, X. Yang, S. Putvinski, N. Rostoker, R. Andow, S. Aefsky, N. Bolte, D. Q. Bui, F. Ceccherini, R. Clary, A. H. Cheung, K. D. Conroy, S. A. Dettrick, J. D. Douglass, P. Feng, L. Galeotti, F. Giammanco, E. Granstedt, D. Gupta, S. Gupta, A. A. Ivanov, J. S. Kinley, K. Knapp, S. Korepanov, M. Hollins, R. Magee, R. Mendoza, Y. Mok, A. Necas, S. Primavera, M. Onofri, D. Osin, N. Rath, T. Roche, J. Romero, J. H. Schroeder, L. Sevier, A. Sibley, Y. Song, A. D. Van Drie, J. K. Walters, W. Waggoner, P. Yushmanov, K. Zhai, and TAE Team, Phys. Plasmas 22, 056110 (2015).
2M. Tuszewski, Nucl. Fusion 28, 2033 (1988).
3M. W. Binderbauer, H. Y. Guo, M. Tuszewski, S. Putvinski, L. Sevier, D.
Barnes, N. Rostoker, M. G. Anderson, R. Andow, L. Bonelli, F. Brandi, R. Brown, D. Q. Bui, V. Bystritskii, F. Ceccherini, R. Clary, A. H. Cheung, K. D. Conroy, B. H. Deng, S. A. Dettrick, J. D. Douglass, P. Feng, L. Galeotti, E. Garate, F. Giammanco, F. J. Glass, O. Gornostaeva, H. Gota, D. Gupta, S. Gupta, J. S. Kinley, K. Knapp, S. Korepanov, M. Hollins, I. Isakov, V. A. Jose, X. L. Li, Y. Luo, P. Marsili, R. Mendoza, M. Meekins, Y. Mok, A. Necas, E. Paganini, F. Pegoraro, R. Pousa-Hijos, S. Primavera, E. Ruskov, A. Qerushi, L. Schmitz, J. H. Schroeder, A. Sibley, A. Smirnov, Y. Song, X. Sun, M. C. Thompson, A. D. Van Drie, J. K. Walters, M. D. Wyman, and TAE Team, Phys. Rev. Lett. 105, 045003 (2010).
4H. Y. Guo, M. W. Binderbauer, D. Barnes, S. Putvinski, N. Rostoker, L. Sevier, M. Tuszewski, M. G. Anderson, R. Andow, L. Bonelli, F. Brandi, R. Brown, D. Q. Bui, V. Bystritskii, F. Ceccherini, R. Clary, A. H.
Cheung, K. D. Conroy, B. H. Deng, S. A. Dettrick, J. D. Douglass, P. Feng, L. Galeotti, E. Garate, F. Giammanco, F. J. Glass, O. Gornostaeva, H. Gota, D. Gupta, S. Gupta, J. S. Kinley, K. Knapp, S. Korepanov, M. Hollins, I. Isakov, V. A. Jose, X. L. Li, Y. Luo, P. Marsili, R. Mendoza, M. Meekins, Y. Mok, A. Necas, E. Paganini, F. Pegoraro, R. Pousa-Hijos, S. Primavera, E. Ruskov, A. Qerushi, L. Schmitz, J. H. Schroeder, A. Sibley, A. Smirnov, Y. Song, L. C. Steinhauer, X. Sun, M. C. Thompson, A. D. Van Drie, J. K. Walters, M. D. Wyman, and TAE Team, Phys. Plasmas 18, 056110 (2011).
5H. Gota, M. Tuszewski, E. Trask, E. Garate, M. W. Binderbauer, T. Tajima, L. Schmitz, B. H. Deng, H. Y. Guo, S. Aefsky, I. Allfrey, D. Barnes, N. Bolte, D. Q. Bui, F. Ceccherini, R. Clary, K. D. Conroy, M. Cordero, S. A. Dettrick, J. D. Douglass, P. Feng, E. Granstedt, D. Gupta, S. Gupta, C. Hooper, J. S. Kinley, K. Knapp, S. Korepanov, A. Longman, R. Magee, R. Mendoza, Y. Mok, A. Necas, S. Primavera, S. Putvinski, M. Onofri, D. Osin, N. Rath, T. Roche, J. Romero, N. Rostoker, J. H. Schroeder, L. Sevier, A. Sibley, A. Smirnov, Y. Song, L. C. Steinhauer, M. C. Thompson, T. Valentine, A. D. Van Drie, J. K. Walters, W. Waggoner, X. Yang, P. Yushmanov, K. Zhai, and TAE Team, Fusion Sci. Technol. 68, 44 (2015).
6M. Tuszewski, A. Smirnov, M. C. Thompson, S. Korepanov, T. Akhmetov, A. Ivanov, R. Voskoboynikov, L. Schmitz, D. Barnes, M. W. Binderbauer, R. Brown, D. Q. Bui, R. Clary, K. D. Conroy, B. H. Deng, S. A. Dettrick, J. D. Douglass, E. Garate, F. J. Glass, H. Gota, H. Y. Guo, D. Gupta, S. Gupta, J. S. Kinley, K. Knapp, A. Longman, M. Hollins, X. L. Li, Y. Luo, R. Mendoza, Y. Mok, A. Necas, S. Primavera, E. Ruskov, J. H. Schroeder, L. Sevier, A. Sibley, Y. Song, X. Sun, E. Trask, A. D. Van Drie, J. K. Walters, M. D. Wyman, and TAE Team, Phys. Rev. Lett. 108, 255008 (2012).
7M. Tuszewski, A. Smirnov, M. C. Thompson, T. Akhmetov, A. Ivanov, R. Voskoboynikov, D. Barnes, M. W. Binderbauer, R. Brown, D. Q. Bui, R. Clary, K. D. Conroy, B. H. Deng, S. A. Dettrick, J. D. Douglass, E. Garate, F. J. Glass, H. Gota, H. Guo, D. Gupta, S. Gupta, J. S. Kinley, K. Knapp, S. Korepanov, A. Longman, M. Hollins, X. L. Li, Y. Luo, R. Mendoza, Y. Mok, A. Necas, S. Primavera, E. Ruskov, L. Schmitz, J. H. Schroeder, L. Sevier, A. Sibley, Y. Song, X. Sun, E. Trask, A. D. Van Drie, J. K. Walters, M. D. Wyman, and TAE Team, Phys. Plasmas 19, 056108 (2012).
8H. Gota, M. C. Thompson, M. Tuszewski, and M. W. Binderbauer, Rev. Sci. Instrum. 85, 11D836 (2014).
9B. H. Deng, J. S. Kinley, and J. Schroeder, Rev. Sci. Instrum. 83, 10E339 (2012).
10K. Zhai, S. Aefsky, H. Zhang, B. LeBlanc, and TAE Team, Bull. Am. Phys. Soc. 59, UP8.00007 (2014).
11D. Osin, D. Gupta, S. Korepanov, M. Onofri, D. Osin, and M. Tuszewski, Bull. Am. Phys. Soc. 58, GP8.00040 (2013).
12D. Gupta, E. Granstedt, S. Gupta, R. Magee, D. Osin, and M. Tuszewski, Bull. Am. Phys. Soc. 59, UP8.00014 (2014).
13M. C. Thompson, J. D. Douglass, P. Feng, K. Knapp, Y. Luo, R. Mendoza, V. Patel, M. Tuszewski, and A. D. Van Drie, Rev. Sci. Instrum. 83, 10D709 (2012).
14H. Gota, M. C. Thompson, K. Knapp, A. D. Van Drie, B. H. Deng, R. Mendoza, H. Y. Guo, and M. Tuszewski, Rev. Sci. Instrum. 83, 10D706 (2012).
15D. J. Rej and M. Tuszewski, Phys. Fluids 27, 1514 (1984).
16M. Tuszewski and R. K. Linford, Phys. Fluids 25, 765 (1982).
17L. C. Steinhauer, R. D. Milroy, and J. T. Slough, Phys. Fluids 28, 888
(1985).
18E. J. Caramana, Phys. Fluids 28, 3557 (1985).
19L. Steinhauer, Phys. Plasmas 21, 082516 (2014).
20K. A. Werley, Phys. Fluids 30, 2129 (1987).
21M.-Y. Hsiao, K. Werley, and K. Ling, Comput. Phys. Commun. 54, 329
(1989).
22D. E. Shumaker, Fusion Sci. Technol. 13, 555 (1988).
23A. Lifschitz, R. Farengo, and N. Arista, Nucl. Fusion 42, 863 (2002).
24A. Lifschitz, R. Farengo, and A. Hoffman, Nucl. Fusion 44, 1015 (2004). 25T. Takahashi, Y. Yamada, Y. Kondoh, M. Goto, T. Okada, Y. Hirano, T.
Asai, T. Takahashi, and Y. Tomita, J. Plasma Phys. 72, 891 (2006).
26F. P. Iizima and T. Takahashi, Plasma Fusion Res. 5, S1031 (2010).
27T. Takahashi, N. Iwasawa, T. Kato, and Y. Kondoh, Plasma Fusion Res. 1,
22 (2006).
28S. Korepanov, A. Smirnov, R. Clary, S. Dettrick, P. Deichuli, A.
Kondakov, and S. Murakhtin, Rev. Sci. Instrum. 83, 10D720 (2012).