2

Research Library

Our research is here to help.

TAE has spent over 20 years working to develop and distribute the cleanest, most sustainable energy source of all time. Our unique approach combines plasma physics and accelerator physics for a brand new pathway to fusion power. Read about our top breakthroughs, and browse the entire research library for over 350 posters and papers published in the world’s leading peer-reviewed journals.

Featured papers.

December 2016 | L. Schmitz | Nature Communications | Paper

An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field.

May 2015 | M. Binderbauer | Physics of Plasmas | Paper

Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns.

Browse the full library.

  • Clear all

April 2018 | A. DuBois | HTPD2018 | Poster

A custom motor controlled probe system has been designed to make spatially resolved measurements of temperature, density, flow, and plasma potential in the C-2W inner divertors. Measurements in the inner divertors, which have a radius of 1.7 m and are located on either end of the confinement vessel, are critical in order to gauge exactly how local settings affect the plasma conditions, confinement, and stability in the FRC core.

February 2018 | L. Steinhauer | Physics of Plasmas | Paper

Coupled transport is the close interconnection between the cross-field and parallel fluxes in differ- ent regions due to topological changes in the magnetic field. This occurs because perpendicular transport is necessary for particles or energy to leave closed field-line regions, while parallel transport strongly affects evolution of open field-line regions.

April 2018 | T. Roche | HTPD2018 | Poster

The C-2W machine is the world’s premier Advanced Beam-Driven FRC
n Monitoring the complete magnetic evolution of the plasma is essential for
understanding the system’s dynamics
n Over 500 B-field signals are monitored to provide both post-shot analysis data and data for an advanced active feedback system.

April 2018 | T. Matsumoto | HTPD2018 | Poster

We have been conducting compact toroid (CT) collision and merging experiments by using two magnetized
coaxial plasma guns (MCPG). As is well known, an actual CT/plasmoid moves macroscopically in a confining magnetic field. Therefore, three-dimensional measurements are important in understanding the behavior of the CTs.

October 2017 | X. Yang | EPJ Web Conference | Paper

Numerous efforts have been made at Tri-Alpha Energy (TAE) to theoretically explore the physics of microwave electron heating in field-reversed configuration (FRC) plasmas. For the fixed 2D profiles of plasma density and temperature for both electrons and thermal ions and equilibrium field of the C-2U machine, simulations with GENRAY-C ray-tracing code have been conducted for the ratios of / ci[D] in the range of 6 – 20.

October 2017 | T. Roche | APS-DPP | Poster

Monitoring the complete magnetic evolution of the plasma is essential for understanding the system’s dynamics. Over 1000 B-field signals are monitored to provide both post-shot analysis data and data for an advanced active feedback system under development

Certain copyright rights accompany the materials herein. Modification, reproduction, distribution, or duplication for any commercial purpose is strictly prohibited.

Join our mailing list.