2

Research Library

Our research is here to help.

TAE has spent over 20 years working to develop and distribute the cleanest, most sustainable energy source of all time. Our unique approach combines plasma physics and accelerator physics for a brand new pathway to fusion power. Read about our top breakthroughs, and browse the entire research library for over 350 posters and papers published in the world’s leading peer-reviewed journals.

Featured papers.

December 2016 | L. Schmitz | Nature Communications | Paper

An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field.

May 2015 | M. Binderbauer | Physics of Plasmas | Paper

Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns.

Browse the full library.

  • Clear all

October 2016 | Hiroshi Gota | EPR2016 | Poster

The experimental program at TAE Technologies has been focused on a demonstration of reliable field-reversed configuration (FRC) formation and sustainment, driven by fast ions via high-power neutral-beam (NB) injection.

January 2016 | D. Fulton | Physics of Plasmas | Paper

Gyrokinetic particle simulation of the field-reversed configuration (FRC) has been developed using the gyrokinetic toroidal code (GTC). The magnetohydrodynamic equilibrium is mapped from cylindrical coordinates to Boozer coordinates for the FRC core and scrape-off layer (SOL), respectively.

May 2015 | M. Binderbauer | Physics of Plasmas | Paper

Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns.

February 2015 | H. Gota | Fusion Science and Technology | Paper

C-2 is a unique, large compact-toroid (CT) device at TAE Technologies that produces field-reversed configuration (FRC) plasmas by colliding and merging oppositely directed CTs. Significant progress has recently been made on C-2, achieving ,5 ms stable plasmas with a dramatic improvement in confinement, far beyond the prediction from the conventional FRC scaling.

October 30, 2014 | T. Matsumoto | APS-DPP | Poster

A collaborative research project with TAE Technologies has been started and we have developed a new compact toroid (CT) injector for the C-2 device, mainly for fueling field-reversed configurations (FRCs).

Certain copyright rights accompany the materials herein. Modification, reproduction, distribution, or duplication for any commercial purpose is strictly prohibited.

Join our mailing list.