Internal Magnetic Field Measurements of Translated and Merged FRC Plasmas in the FAT-CM Device

April 2018 | H. Gota | HTPD2018 | Poster

Field-reversed configuration (FRC) Amplification via Translation – Collisional Merging (FAT-CM) experiments have recently commenced to study physics phenomena of collisions and merged FRC plasma states [1].

Details

Jet Outflow and Open Field Line Measurements on the C-2W Advanced Beam-Driven Field-Reversed Configuration Plasma Experiment

April 2018 | D. Sheftman | HTPD2018 | Poster

Accurate operation and high performance of the open field line plasma surrounding the Field Reversed Configuration (FRC) is crucial to achieving the goals of successful temperature ramp up and confinement improvement on C-2W.

Details

Development of Charge Exchange Recombination Spectroscopy Diagnostics for the C-2W Field-Reversed Configuration Plasma

April 2018 | D. Gupta | HTPD2018 | Poster

Charge Exchange Recombination Spectroscopy (ChERS) diagnostics will provide measurements of ion temperature, velocity and density profiles in C-2W field-reversed configuration (FRC) plasmas.

Details

Development of a three-wave far-infrared laser interferometry and polarimetry diagnostics for the C-2W FRC Experiment

April 2018 | B. Deng | HTPD2018 | Poster

C-2W field-reversed configuration (FRC) experiments [1] are focused to resolve major physics issues facing the future of FRC devices. To achieve these goals, it is essential to measure the plasma equilibrium dynamics and monitor plasma fluctuations.

Details

Design and Characterization of High Repetition Rate Lasers and Collection Optics for Thomson Scattering Diagnostics on C-2W

April 2018 | A. Ottaviano | HTPD2018 | Poster

A new Thomson scattering (TS) system is being constructed on C-2W for obtaining electron temperature and density profiles with high temporal and spatial resolution. Validating the performance of the TS’s custom designed system components is crucial to obtaining reliable Te and ne profiles of C-2W’s plasma.

Details

Design of a Custom Insertable Probe Platform for Measurements of C-2W Inner Divertor Plasma Parameters

April 2018 | A. DuBois | HTPD2018 | Poster

A custom motor controlled probe system has been designed to make spatially resolved measurements of temperature, density, flow, and plasma potential in the C-2W inner divertors. Measurements in the inner divertors, which have a radius of 1.7 m and are located on either end of the confinement vessel, are critical in order to gauge exactly how local settings affect the plasma conditions, confinement, and stability in the FRC core.

Details

Inference of field reversed configuration topology and dynamics during Alfvenic transients

February 2018 | J.A. Romero | Nature Communications | Paper

Active control of field reversed configuration (FRC) devices requires a method to determine the flux surface geometry and dynamic properties of the plasma during both transient and steady-state conditions.

Details

Spectral and Intensity Calibration of a Thomson Scattering Diagnostic for the C-2W Field- Reversed Configuration Plasma Experiment

April 2018 | T. Schindler | HTPD2018 | Poster

The C-2W Thomson Scattering diagnostic consists of two individual systems for monitoring electron temperature and density; one system in the central region is operational and the second system, currently under design, will monitor the open field line jet region1.

Details

Magnetic Diagnostic Suite of the C-2W Field-Reversed Configuration Experiment

April 2018 | T. Roche | HTPD2018 | Poster

The C-2W machine is the world’s premier Advanced Beam-Driven FRC
n Monitoring the complete magnetic evolution of the plasma is essential for
understanding the system’s dynamics
n Over 500 B-field signals are monitored to provide both post-shot analysis data and data for an advanced active feedback system.

Details