Fusion reactivity of the pB11 plasma revisited

Fusion reactivity of the pB11 plasma revisited

June 2019 | S.V. Putvinski | Nuclear Fusion | Paper

Fusion reactivity for the pB11 fuel has been reassessed for magnetic confinement devices. This study is based on two factors: new measurements of the fusion reaction cross-sections and an accounting of the kinetic effects that lead to the increase of the number of protons at higher energies (with respect to a pure Maxwellian).

Collisional Merging of a Field-Reversed Configuration in the FAT-CM Device

Collisional Merging of a Field-Reversed Configuration in the FAT-CM Device

June 2019 | T. Asai | Nuclear Fusion | Paper

Collisional merging formation of field-reversed configurations (FRCs) at super Alfvénic velocity have been successfully initiated in the FAT-CM device at Nihon University. It is experimentally evidenced that the quiescent FRC profile is formed in a self-organizational manner after distructive disturbances by the super Alfvénic collision of two translated magnetized plasmoids.

Formation of Hot, Stable, Long-Lived Field-Reversed Configuration Plasmas on the C-2W Device

Formation of Hot, Stable, Long-Lived Field-Reversed Configuration Plasmas on the C-2W Device

June 2019 | H. Gota | Nuclear Fusion | Paper

TAE Technologies’ research is devoted to producing high temperature, stable, long-lived field-reversed configuration (FRC) plasmas by neutral-beam injection (NBI) and edge biasing/control.

CAN Laser Driven Liquid-phase Transmutator Monitored Realtime by Fiber Laser

CAN Laser Driven Liquid-phase Transmutator Monitored Realtime by Fiber Laser

April 12, 2019 | T. Tajima | Paper

We introduce a method of transmutation of spent radioactive nuclei in a liquid molten salt solution with fusion neutrons through a series of energy enhancements from accelerated deuterons via fusion to fission. This method is a part of the partitioning & transmutation (P&T) approach for the disposal of spent nuclear fuel where P&T enables the reduction of duration and volume of the spent nuclear fuel storage.