Internal Magnetic Field Measurements of Translated and Merged FRC Plasmas in the FAT-CM Device

Internal Magnetic Field Measurements of Translated and Merged FRC Plasmas in the FAT-CM Device

April 2018 | H. Gota | HTPD2018 | Poster

Field-reversed configuration (FRC) Amplification via Translation – Collisional Merging (FAT-CM) experiments have recently commenced to study physics phenomena of collisions and merged FRC plasma states [1].

Jet Outflow and Open Field Line Measurements on the C-2W Advanced Beam-Driven Field-Reversed Configuration Plasma Experiment

Jet Outflow and Open Field Line Measurements on the C-2W Advanced Beam-Driven Field-Reversed Configuration Plasma Experiment

April 2018 | D. Sheftman | HTPD2018 | Poster

Accurate operation and high performance of the open field line plasma surrounding the Field Reversed Configuration (FRC) is crucial to achieving the goals of successful temperature ramp up and confinement improvement on C-2W.

Development of Charge Exchange Recombination Spectroscopy Diagnostics for the C-2W Field-Reversed Configuration Plasma

Development of Charge Exchange Recombination Spectroscopy Diagnostics for the C-2W Field-Reversed Configuration Plasma

April 2018 | D. Gupta | HTPD2018 | Poster

Charge Exchange Recombination Spectroscopy (ChERS) diagnostics will provide measurements of ion temperature, velocity and density profiles in C-2W field-reversed configuration (FRC) plasmas.

Development of a three-wave far-infrared laser interferometry and polarimetry diagnostics for the C-2W FRC Experiment

Development of a three-wave far-infrared laser interferometry and polarimetry diagnostics for the C-2W FRC Experiment

April 2018 | B. Deng | HTPD2018 | Poster

C-2W field-reversed configuration (FRC) experiments [1] are focused to resolve major physics issues facing the future of FRC devices. To achieve these goals, it is essential to measure the plasma equilibrium dynamics and monitor plasma fluctuations.

Design and Characterization of High Repetition Rate Lasers and Collection Optics for Thomson Scattering Diagnostics on C-2W

Design and Characterization of High Repetition Rate Lasers and Collection Optics for Thomson Scattering Diagnostics on C-2W

April 2018 | A. Ottaviano | HTPD2018 | Poster

A new Thomson scattering (TS) system is being constructed on C-2W for obtaining electron temperature and density profiles with high temporal and spatial resolution. Validating the performance of the TS’s custom designed system components is crucial to obtaining reliable Te and ne profiles of C-2W’s plasma.