Control of ion gyroscale fluctuations via electrostatic biasing and sheared E×B flow in the C-2 field reversed configuration

March 2016 | AIP Conference Proceedings | Paper

Control of radial particle and thermal transport is instrumental for achieving and sustaining well-confined high-β plasma in a Field-Reversed Configuration (FRC). Radial profiles of low frequency ion gyro-scale density fluctuations (0.5 ≤ kρs ≤ 40), consistent with drift- or drift-interchange modes, have been measured in the scrape-off layer (SOL) and core of the C-2 Field-Reversed Configuration (FRC), together with the toroidal ExB velocity.

Details

Robustness of waves with a high phase velocity

March 2016 | AIP Conference Proceedings | Paper

Norman Rostoker pioneered research of (1) plasma-driven accelerators and (2) beam-driven fusion reactors. The collective acceleration, coined by Veksler, advocates to drive above-ionization plasma waves by an electron beam to accelerate ions. The research on this, among others, by the Rostoker group incubated the idea that eventually led to the birth of the laser wakefield acceleration (LWFA), by which a large and robust accelerating collective fields may be generated in plasma in which plasma remains robust and undisrupted.

Details

End loss analyzer system for measurements of plasma flux at the C-2U divertor electrode

March 2016 | AIP Conference Proceedings | Paper

An end loss analyzer system was developed to study thermal transport on the open field lines that surround the advanced beam-driven field-reversed configuration (FRC) core of the C-2U experiment. The system is mounted directly to the divertor electrode and consists of gridded retarding-potential analyzers that measure ion current density and ion energy as well as pyroelectric crystal bolometers that measure the total power flux.

Details