Simulations of High Harmonic Fast Wave Heating on the C-2U Advanced Beam-Driven Field-Reversed Configuration Device

October 2017 | X. Yang | EPJ Web Conference | Paper

Numerous efforts have been made at Tri-Alpha Energy (TAE) to theoretically explore the physics of microwave electron heating in field-reversed configuration (FRC) plasmas. For the fixed 2D profiles of plasma density and temperature for both electrons and thermal ions and equilibrium field of the C-2U machine, simulations with GENRAY-C ray-tracing code have been conducted for the ratios of / ci[D] in the range of 6 – 20.


Magnetohydrodynamic transport characterization of a Field Reversed Configuration

September 2017 | M. Onofri | Physics of Plasmas | Paper

The transport phenomenon of a Field Reversed Configuration (FRC) is studied using the newly developed two-dimensional code Q2D, which couples a magnetohydrodynamic code with a Monte Carlo code for the beam component. The simulation by Q2D of the transport parallel to the simple open h-pinch fields and its associated outflow phenomenon shows an excellent agreement with one of the leading theories, elevating the Q2D validity and simultaneously deepening the theoretical understanding of this fundamental process.


Drift-wave stability in the field-reversed configuration

August 2017 | C. K. Lau | Physics of Plasmas | Paper

Gyrokinetic simulations of C-2-like field-reversed configuration (FRC) find that electrostatic drift- waves are locally stable in the core. The stabilization mechanisms include finite Larmor radius effects, magnetic well (negative grad-B), and fast electron short circuit effects.


Compact Toroid Injection Fueling in a Large Field-Reversed Configuration

May 2017 | T. Asai | Nuclear Fusion | Paper

A repetitively driven compact toroid (CT) injector has been developed for the large eld- reversed con guration (FRC) facility of the C-2/C-2U, primarily for particle refueling. A CT is formed and injected by a magnetized coaxial plasma gun (MCPG) exclusively developed for the C-2/C-2U FRC.


Equilibrium properties of hybrid field reversed configurations

January 2017 | M. Tuszewski | Physics of Plasma | Paper

Field Reversed Configurations (FRCs) heated by neutral beam injection may include a large fast ion pressure that significantly modifies the equilibrium. A new analysis is required to characterize such hybrid FRCs, as the simple relations used up to now prove inaccurate.


Suppressed ion-scale turbulence in a hot high-beta plasma

December 2016 | L. Schmitz | Nature Communications | Paper

An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field.


Improved density profile measurements in the C-2U advanced beam-driven Field-Reversed Configuration (FRC) plasmas

August 2016 | M. Beall | Review of Scientific Instruments | Paper

In the prior C-2 experiment, electron density was measured using a two-color 6-chord CO2/HeNe interferometer. Analysis shows that high-frequency common mode phase noise can be reduced by a factor of 3 by constructing a reference chord.


Diagnostic suite of the C-2U advanced beam-driven field-reversed configuration plasma experiment

August 2016 | M. C. Thompson | Review of Scientific Instruments | Paper

The C-2U experiment at Tri Alpha Energy studies the evolution of field-reversed configuration (FRC) plasmas sustained by neutral beam injection. Data on the FRC plasma performance are provided by a comprehensive suite of diagnostics that includes magnetic sensors, interferometry, Thomson scattering, spectroscopy, bolometry, reflectometry, neutral particle analyzers, and fusion product detectors.


High sensitivity far infrared laser diagnostics for the C-2U advanced beam-driven field-reversed configuration plasmas

August 2016 | B. H. Deng | Review of Scientific Instruments | Paper

A high sensitivity multi-channel far infrared laser diagnostics with switchable interferometry and polarimetry operation modes for the advanced neutral beam-driven C-2U field-reversed configuration (FRC) plasmas is described. The interferometer achieved superior resolution of 1 ⇥ 1016 m 2 at >1.5 MHz bandwidth, illustrated by measurement of small amplitude high frequency fluctuations.


Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment

August 2016 | D. Sheftman | Review of Scientific Instruments | Paper

Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field- reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements.