Formation of Hot, Stable, Long-Lived Field-Reversed Configuration Plasmas on the C-2W Device

June 2019 | H. Gota | Nuclear Fusion | Paper

TAE Technologies’ research is devoted to producing high temperature, stable, long-lived field-reversed configuration (FRC) plasmas by neutral-beam injection (NBI) and edge biasing/control.

Details

Integrated Modeling of Stability and Transport of FRC Plasmas

April 2019 | A.Necas | 2019 Sherwood Fusion Theory | Poster

TAE Technologies, Inc, has an active fusion plasma research program centered around the FRC (Field Reversed Configuration) magnetic topology and the existing C-2W (aka Norman) experiment.

Details

Collisional merging process of field-reversed configuration plasmas in the FAT-CM device

July 2018 | F. Tanaka (Nihon Univ.) | Plasma and Fusion Research | Paper

In order to investigate the collisional merging process of field-reversed configurations (FRCs), the FAT device has recently been upgraded to FAT-CM, consisting of two field-reversed theta-pinch (FRTP) formation sections and the confinement section.

Details

Inference of field reversed configuration topology and dynamics during Alfvenic transients

February 2018 | J.A. Romero | Nature Communications | Paper

Active control of field reversed configuration (FRC) devices requires a method to determine the flux surface geometry and dynamic properties of the plasma during both transient and steady-state conditions.

Details

Drift-wave stability in the field-reversed configuration

August 2017 | C. K. Lau | Physics of Plasmas | Paper

Gyrokinetic simulations of C-2-like field-reversed configuration (FRC) find that electrostatic drift- waves are locally stable in the core. The stabilization mechanisms include finite Larmor radius effects, magnetic well (negative grad-B), and fast electron short circuit effects.

Details

Suppressed ion-scale turbulence in a hot high-beta plasma

December 2016 | L. Schmitz | Nature Communications | Paper

An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field.

Details