The Field Reversed Configuration: A promising path to aneutronic fusion

November 2024 | J. Romero | HPC | Presentation

The FRC suits aneutronic fuels ideally. Norman confines FRC plasma in an accessible linear device. Feedback control maintains stable, steady-state plasma. Bayesian inference enables holistic data analysis. Machine learning accelerates commercial energy development.

Enhanced Ion Heating Regimes in a Beam-Driven Field-Reversed Configuration

October 2024 | M. Nations | APS DPP 2024 | Poster

Experiments on C-2W demonstrate enhanced ion heating through beam-driven waves, where fast-ion energy is directly transferred to thermal ions via wave-particle interactions, resulting in sustained high ion temperatures and improved plasma performance.

An Overview of Accomplishments From Experiment and Theory at TAE Technologies

October 2024 | S. Dettrick | APS DPP 2024 | Poster

TAE Technologies reports advancements in plasma performance and stability for C-2W through optimized neutral beam injection, new diagnostic tools, and enhanced modeling frameworks, demonstrating improved ion heating, extended plasma lifetimes, and effective wall conditioning.

Enhanced Plasma Performance in C-2W Advanced Beam-Driven Field-Reversed Configuration Experiments

October 2023 | H. Gota | IAEA-FEC 2023 | Poster

The NB power-supply system has recently been upgraded to extend the pulse length from 30 ms to 40 ms, which allows for a longer plasma lifetime thus better characterization and further enhancement of FRC performance.